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Abstract

The development of robust high-order finite element methods requires the construction of valid high-order meshes for complex
geometries without user intervention. This paper presents a novel approach for automatically generating a high-order mesh with
two main features: first, the boundary of the mesh is globally smooth; second, the mesh boundary satisfies a required fidelity
tolerance. Invalid elements are eliminated. Example meshes demonstrate the features of the algorithm.
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1. Introduction

High-order finite element methods have been used extensively in direct numerical simulations in the last few
decades. The exponential rates of convergence, small dispersion and diffusion solution errors have all motivated the
development of higher-order finite element techniques which better capture the geometry [1,2,11]. How well the
geometry is approximated has fundamentally important effects on the accuracy of finite element solutions [6,10].
Therefore, valid meshes with properly curved elements must be constructed to approximate the curved geometric
domain.

The discretization error results from the fact that a function of a continuous variable is represented in the computer
by a finite number of evaluations. In conventional meshes with all straight-sided elements, the discretization error
is usually controlled by making sufficiently small elements where geometric features occur such as on the objects’
boundary. But this is not numerically efficient in the sense that the cost of assembling and solving a sparse system
of linear equations in the FE method directly depends on the number of elements. The high-order methods however,
decompose the solution domain into fewer elemental regions that capture the features of the geometry.

There are two ways to accomplish the generation of a curvilinear mesh when a geometric domain is given. The
first is to directly create a valid curvilinear boundary and interior discretization with required size and shape of the
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elements. The second way is to initially construct a straightedge discretization of the model geometry, followed by
the transformation of that discretization into high-order elements suitable for a high-order FE method.

Various procedures have been developed and implemented using the latter approach. Sherwin and Peiro [19]
presented a high-order unstructured mesh generation algorithm. A linear triangular surface mesh is first generated,
the transformation of that mesh into high-order surface is performed, and finally a curved mesh is constructed of the
interior volume. Three strategies are adopted to alleviate the problem of invalid high-order meshes: optimization
of the surface mesh that accounts for surface curvature, hybrid meshing with prismatic elements near the domain
boundaries and curvature driven surface mesh adaption.

Dey et al. [6] described an iterative algorithm for curving straight-edge meshes using quadratic Lagrange inter-
polation functions. First, all mesh edges and faces classified on curved model boundaries are curved. Second, the
intersections between mesh edges on the model surface are detected and eliminated. Third, invalid curved mesh
regions are corrected by using local mesh modification tools.

Shephard et al. [18] discussed the automatic generation of adaptively controlled meshes for general three-dimensional
domains. The algorithm starts with isolating all of the edges and vertices in the model that will have singularities,
constructing of a coarse linear mesh on the boundary of the model with appropriate geometric gradation towards the
isolated singular features and constructing of a coarse linear mesh of the remainder of the domain. Then the algo-
rithm curves the singular feature isolation mesh, and the remaining mesh entities classified on the curved boundaries.
Finally, mesh modification is applied to ensure a valid mesh of acceptably shaped elements.

Luo et al. [15] isolates singular reentrant model entities, then generates linear elements around those features, and
curves them while maintaining the gradation. Linear elements are generated for the rest of the domain, and those
elements that are classified on the curved boundary, are transformed into curved elements conforming to the curved
boundary. Modification operations are applied to eliminate invalid elements whenever they are introduced. Later,
they extended their work to adapted boundary layer meshes to allow for higher-order analysis of viscous flows [17].
The layered structure of anisotropic elements in the boundary layer meshes is able to construct elements with proper
configuration and gradation.

George and Borouchaki [8] proposed a method for constructing tetrahedral meshes of degree two from a polynomial
surface mesh of degree two. Corresponding linear surface mesh is first extracted, followed by constructing the linear
volumetric mesh. Next the algorithm enriches the linear mesh to the polynomial of degree two mesh by introducing
the edge nodes. After that Jacobian is introduced for guiding the correction of the invalid curved elements. Finally an
optimization procedure is used to enhance the quality of the curved mesh.

Lu et al. [13] presented a parallel mesh adaptation method with curved element geometry. The core of the algorithm
is made up of two classes of mesh modification. Element invalidity and shape quality problems are resolved by curved
entity reshaping operations and by local mesh modifications.

The validity of a curved mesh is crucial to the successful execution of high-order finite element simulations. To
verify the validity, it is necessary to calculate the determinant of the Jacobian matrix (Jacobian). A curved element is
valid if and only if its Jacobian is strictly positive everywhere. However, it is cumbersome to verify the element va-
lidity when Lagrangian polynomial is used because calculating Jacobian becomes computationally and geometrically
complex. Prior work shows that the properties of Bézier polynomials provide an attractive solution [8,9,13,14]. A
lower bound for the Jacobian can be evaluated by the convex hull property of the Bézier polynomials [7]. If the lower
bound is not tight enough, either degree elevation procedure or subdivision procedure is selected to yield a tighter
lower bound [8,13,14]. Johnen et al. [9] expands the Jacobian using Bézier polynomial basis. Based on its properties,
boundedness and positivity were obtained to provide an efficient way to determine the validity and to measure the
distortion.

In this paper, a new approach is proposed for automatically generating a high-order mesh to represent geometry
with smooth mesh boundaries and graded interior with guaranteed fidelity. Cubic Bézier polynomial basis is selected
for the geometric representation of the elements because it provides a convenient framework supporting the smooth
operation while maintaining guaranteed fidelity. We list the contributions in this paper here. To our knowledge, no
consideration was given to them in prior work.

o Curved mesh boundary is globally smooth, i.e., its tangent is everywhere continuous.

e Curved mesh boundary everywhere satisfies a user-defined fidelity tolerance.
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The procedure starts with the automatic construction of a graded linear mesh that simultaneously satisfies the
quality and the fidelity requirements. The edges of those linear elements which are classified on curved boundary are
then curved using cubic Bézier polynomial basis while maintaining the smoothness. To resist inverted elements, the
procedure next curves the interior elements by solving for the equilibrium configuration of an elasticity problem. A
validity verification procedure demonstrates that intersection edges and highly distorted elements are eliminated.

The rest of the paper is organized as follows. In Section 2, we review some basic definitions and materials.
Section 3 gives a description of the automatic construction of graded linear mesh, while Section 4 describes the
transformation of those linear mesh elements into high-order elements. Section 5 presents the validity checking
algorithms. Section 6 proves mesh fidelity. We present meshing results in Section 7 and conclude in Section 8.

2. Preliminaries

The method uses the cubic Bézier polynomial basis to construct a high-order mesh that has smooth boundaries.
The idea is to deform the linear mesh edges such that the curved edges conform to the expected domain boundary.
The determinant of the Jacobian matrix is used to determine the validity. In this section we review Bézier curves,
Bézier triangles and the Jacobian.

2.1. Bézier curves

We will express Bézier curves in terms of Bernstein polynomials. A nth order Bernstein polynomial is defined
explicitly by

B?(t)z(’;)ti(l—t)”‘i, i=0,..n te[0,1],

where the binomial coefficients are given by

il |0 else.

One of the important properties of the Bernstein polynomials is that they satisfy the following recursion:
Bi(0) = (1 - 0B/ () + 1B} (1),

then a recursive definition for the Bézier curve of degree n expresses it as a point-to-point linear combination (linear
interpolation) of a pair of corresponding points in two Bézier curves of degree n — 1.
Given a set of points Py, Py, ..., P, € E3, where E? is three-dimensional euclidean space, and 7 € [0, 1], set

=1,..,n

bi(6) = (1 = Dby~ (t) + b} (¢) {lrz 0,..n—r

and b?(t) = P;. Then bj(¢) is the point with parameter value ¢ on the Bézier curve b". The polygon P formed by
Py, Py, ..., P, is called control polygon of the curve b", and the polygon vertices P; are called control points.
An explicit form of a nth order Bézier curve can be defined as

B'(t)= )" Bi®P:
i=0
The barycentric form of Bézier curves can demonstrate its symmetry property nicely. Let u and v be the barycentric

coordinates, u € [0, 1] and v € [0, 1], u + v = 1, then

B'uv)= > Bl v)Py,

i+j=n

where P;; € E3 are the control points, and i + j = n.
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Specifically, a cubic Bézier curve can be written in terms of the barycentric coordinates,

Buv)= ) By v)Pi,

i+j=3
where B?j(u, V) = %uiv-" ,u€[0,1]and v € [0, 1] are the barycentric coordinates and u + v = 1.
2.2. Bézier triangles

Univariate Bernstein polynomials are the terms of the binomial expansion of [z + (1 — #)]". In the bivariate case, a
nth order Bernstain polynomial is defined by

n\y . . 2
B} (i) = (7)“lvjwk’ li|= n,

where u € [0,1], v € [0, 1] and w € [0, 1] are the barycentric coordinates and # + v + w = 1. This follows standard
convention for the frinomial coefficients (’7[) = l,;’—,'k,
This leads to a simple definition of a Bézier triangle of degree n

T vw) = D Bl v, w)Piy,

i+j+k=n

where P;j; are the control points. Specifically, a Bézier triangle of degree three can be written as

T3 v,w) = D Bl v, WPy,
i+j+k=3

3!

where B?jk(u, v, w) = Wuivjw ,uel0,1],v e[0,1] and w € [0, 1] are the barycentric coordinates and u +v+w = 1.

The Bézier mesh geometry shape possesses three important properties which are useful to this work:

k

o The Convex Hull Property: A Bézier curve, surface or volume is contained in the convex hull formed by its
control points;

o All derivatives and products of Bézier functions are Bézier functions;

o The convex hull can be refined by Bézier degree elevation algorithm or Bézier subdivision algorithm.
2.3. The Jacobian

We explore the concept of a derivative of a coordinate transformation, which is known as the Jacobian of the
transformation.
Let’s start at the definition of a finite element. A typical finite element e, e € R", is defined by a closed subset of K,
K € R" with a non empty interior, a set of real-valued functions N defined over the set K, and a finite set of local nodes
u;, 1 < i < N. Then the mapping from the set of local coordinates %,  to a corresponding set of global coordinates x,
yis:
u
» - Uz
f= " Neiiy = [N}, Na, s NI | 2|, @ =1,2,0N,
-
Un

where i = u(x, y), and i@, = u,(%,9). The functions N,,a = 1,2, ..., N are called shape functions (or basis functions).
By the chain rule of partial differentiation we have

ax 0y dox Oy dy 9y ox  dy

ax dx
[6Na 6Na] _ [BN,, aNa][ax (’)}v] _ [BNH 6N,,]J
- - £

9% 8
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Fig. 1: Two Bézier paths with their control points (in green), made out of two cubic Bézier curves connected by the
endpoints (in red). The yellow line segments are tangents to the both sides of the red Bézier endpoint. Left: a smooth
Bézier path because the two green control points and the red endpoint lie in a straight line. Right: a Bézier path with
a cusp where the curves connect, because the two green control points and the red endpoint do not lie in a straight
line.

/- l;_ g;:} .
3
J is known as the Jacobian matrix for the transformation. As x, y are explicitly given by the relation defining the
curvilinear coordinates, the matrix J can be found explicitly in terms of the local coordinates.

3. Linear mesh construction

We adopt the image-to-mesh conversion algorithm [3], for four reasons: (1) it allows for a guaranteed angle bound
(quality), (2) it allows for a guaranteed bound on the distance between the boundaries of the mesh and the boundaries
of the object (fidelity), (3) it coarsens the mesh to a much lower number of elements with gradation in the interior, (4)
it is formulated to work in both two and three dimensions. Once we have a high quality linear mesh, we are about to
construct curvilinear mesh based on it as the next step.

4. Curvilinear mesh transformation from linear meshes

Although it is attractive to construct valid high-order meshes by curving mesh entities classified on curved bound-
aries and the remainder of the domain simultaneously, in practice we transform the linear mesh entities classified on
boundaries followed by curving mesh entities in the interior while eliminating invalid elements. Bézier curve basis is
selected because its mathematical descriptions are compact, intuitive, and elegant. It is easy to compute, easy to use
in higher dimensions (3D and up), and can be stitched together to represent any shape.

4.1. Constructing smooth Bézier paths from boundary mesh entities

A curve or surface can be described as having C" continuity, n being the measure of smoothness. Consider the
segments on either side of a point on a curve:

CO: The curves touch at the joint point;
C!: First derivatives are continuous;
C?: First and second derivatives are continuous.

We aim to find a smooth C! curve passing through all the mesh boundary points given in order. A Bézier path is
C' smooth provided that two Bézier curves share a common tangent direction at the join point. In other words, each
endpoint and its two surrounding control points lie in a straight line. Fig. 1 shows two Bézier paths with their control
points.

The basic idea is to calculate control points around each endpoint so that they lie in a straight line with the endpoint.
However, curved segments would not flow smoothly together when quadratic Bézier form (three control points) is
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Fig. 2: An example of finding control points of a smooth cubic Bézier path. For the curve between P, and P,, we
need C, and C3. On segment PyP,, find a point Q; such that|PyQ,|/|Q1P2|= |PoP1|/|P1P>|. Translate segment PyP,
so that point Q; lies on point P;, and scale the length of translated segment Py P,, then the new position of point P, is
the position of control point C,. Similarly, the position of control point C3 can be found by translating segment P P3
such that point Q, lies on point P;.

used. Instead, we need to go one order higher to a cubic Bézier (four control points) so we can build “S” shaped
segments.

The points we have in hand are only endpoints of boundary segments, so the task becomes to find the other two
control points to define the Bézier curve. We find these control points by translating the segments formed by the lines
between the previous endpoint and the next endpoint such that these segments become the tangents of the curves at
the endpoints. We scale these segments to control the curvature. An example is illustrated in Fig. 2.

4.2. Curving mesh entities in the interior

It is usually not enough to curve only the boundary mesh edges because self-intersecting mesh edges may appear
which lead to invalid elements. In such cases, interior mesh elements should also be curved to eliminate the invalidity
or improve curved element quality. Local mesh modifications such as minimizing the deformation, edge or facet
deletion, splitting, collapsing, swapping as well as shape manipulation have been used to correct an invalid region [6,
8,13,15].

Persson and Peraire [16] proposed a node relocation strategy for constructing well-shaped curved mesh. They
use a nonlinear elasticity analogy, where the geometry of the domain to be meshed is represented as an elastic solid.
By solving for the equilibrium configuration, vertices located in the interior are relocated as a result of a prescribed
boundary displacement. We will follow this idea in this section.

For each mesh edge, we find the positions of the two nodes that are located in the one-third and two-thirds ratio of
each edge of the linear mesh. These positions are original positions of these nodes before deformation. We find the
control points corresponding to the new positions of these nodes for the interior mesh edges after the mesh is deformed.
We deform the mesh such that the two nodes on each boundary edge of the linear mesh move to the corresponding
positions (one-third and two-thirds ratio) on the curved boundary edge. The vertices on boundary edges maintain
their positions because they are already on the curved boundary. The new coordinates of all the vertices and nodes
on the interior edges after deformation are computed by solving an elastic finite element problem [21]. As a result,
the elements of the linear mesh are deformed minimally and proportionally to their distance to the points lying on the
curved mesh boundary and to the amount of the displacement at these boundary vertices and nodes. Fig. 3 illustrates
this step.

Using the new positions of these points after deformation, the corresponding control points that determine the
curved edge passing through the points in the new positions can be easily calculated:

5 1 3
C1 = —EV() + §V1 + 31/3 - §V4,

1 5 3
Cy = §Vo - gvl - §V3 + 3vy,
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(a) (b)

Fig. 3: An illustration of the solid mechanics approach to curved mesh generation. The bold blue line is curved
boundary, the red crosses show the original vertex positions, the blue stars show the new positions after the elements
are deformed according to the solution of a nonlinear elasticity problem, the gray segments show the displacements.
(a) Before deformation, each one of the linear elements is divided into 9 sub-elements, with one-third and two-thirds
ratio of each edge. (b) Elements are deformed according to the equilibrium solution of a linear elasticity problem.

where C| and C, are two middle control points of the four control points of the interior mesh edge, and vy, v, v, and
v3 are points the curved edge passes through.

Validity check is executed after this procedure. In most cases, it can handle this problem successfully. However,
in the case that the curvature of the boundary edges is very large, the interior linear edges may not be curved enough
to avoid the intersection. Once our validity checking procedure reports that there is an invalid element, local mesh
modifications can be used to correct the shape.

5. Element validity

A curvilinear mesh is valid provided that the intersection of the interiors of two different elements is the null set
and any two mesh edges or faces do not intersect each other (except the common vertices or edges). To verify a curved
element, we can use explicit intersection checks if the number of elements is small. A cheaper way is detecting the
intersection at the element level by evaluating the sign of the Jacobian throughout the element. One approach is
verifying the positiveness by sampling the Jacobian at discrete locations [12]. A more precise way is to calculate a
lower bound for the Jacobian. When the Bézier form is used to map a reference element, the Jacobian is also a Bézier
function with order g = dimension % (degree — 1) [14], it is easy to be obtained due to its convex hull property [7].
In the case that a positive lower bound is obtained, it guarantees that the element is valid; on the contrary, when a
non-positive bound occurs, the element may or may not be invalid. In this case we need to obtain a tighter bound.
This evaluation can be either used to check the validity or to guide the correction of invalid elements.

We rewrite a cubic Bézier triangle 77 (u, v, w) in the following form:

7'3(u, v, W) = P300u3 +P()3()V3 +P003W3 +3P201u2w+3P210u2v+3P120uv2 +3P102MW2 +3P021V2W+3P012VW2 +6P1 uvw.

The Jacobian matrix of a Bézier triangle can be written as

Ox Ox X 3
oo @ _[0_70_’/’01] o Iy
|9 | T | u v ow]|ox 45|
3% 9 dw dw
0% 05
with variable change (u =1 - % -9, v= % w =) [8],
ou Ou
e -1 -1
w11 0
ax oy |~ ’
aw ow 0 1

0%
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Table 1: Fifteen control values for det(J) of a cubic triangle

P;j Control Value
Psyoo  9(ai x ay - M)
Poso (b1 X by - 1)
Poos  9c1 X ¢ - 1)
Py §(al><b2'ﬁ+l?1><(,12'ﬁ+4-61><€2'}7l))
Py —(a1><cz-ﬁ’+c1xa2'ﬁ+4d1xd2~ﬁ’)
P022 —(blXCz‘ﬁ+C1Xb2'ﬁ+4ﬁXf2'ﬁ)
P31 —(GIXdz-ﬁ+d1Xaz'ﬁ)
P39 —(alxeg-ﬁ+el><a2-ﬁ)
P|30 —(b1X€2'ﬁ+€|Xb2'ﬁ)
Pozi 5(b1 X fo- it + fi X by - i)
Pz s(ci xdy-t+dy X cr- i)
Poiz  s(cr X fo-ii+ fi X ¢+ D)
Py —(GIsz'ﬁ+f]Xaz'ﬁ+2d1Xé‘z'ﬁ"r2€1><d2'ﬁ)
Pii 20y Xdy-+dy Xby-i+2e; X fo-A+2fI Xey 1)
P 5(61X€2'7_l)+€1XC2~I’_l)+2d1Xf2~}’_l)+2f1>(d2'ﬁ)
therefore,
-1 -1
_ o o7 oT _[or _ o o _ oT
J=% %] (1) =% - % % -5
Finally,
o7 OT T  IT
det(J) = (— — —) X (=— - —) - 71,
etJ) (av Bu) (8w ('ht) "

where 71 is the vector (0, 0, 1). Because the derivative of a gth order Bézier function is a (¢ — 1)th order Bézier function
and the product of two Bézier functions is also a Bézier function, the resulting Jacobian is a Bézier polynomial
function with order 2(g — 1). In our case, the Jacobian is a fourth order Bézier polynomial with fifteen control points.
Specifically,
THuwv,w) = > Bl v, w)Pij,
i+j+k=4

Aulviwk, u € 10,11, v € [0,1] and w € [0, 1] are the

where P;j is one of the fifteen control values, B;‘jk(u, v, W) = i

barycentric coordinates and u + v + w = 1. Because

9] 0
—T - —T = 3u’a; + 3v*by + 3wlc; + 6uwd; + 6uve; + 6vw f
ov  Ou

and o oT
—_— - = 3u2a2 + 3v2b2 + 3W262 + 6uwd, + 6uve, + 6vwis,
ow  Ou

where a; = P10 — P300, b1 = Poso — Pi2o, ¢1 = Po12 — Pio2, di = Pi11 — Paot, €1 = Piao — Pao, fi = Po21i — Pra,
az = Py — P3p0, b2 = Poa1 — P20, ¢2 = Poos — Pro2, d2 = Proz — Paot, €2 = Pi11 — Paio, fo = Porz — P11, the fifteen
control values can be calculated. They are listed in Table 1.

If the element is valid, it means the Jacobian is positive everywhere in this element. However, if the computed
lower bound of the Jacobian is non-positive, it does not necessarily mean that the element is invalid. Since it is only
a sufficient condition to calculate a lower bound of the Jacobian, sometimes, it is overly conservative. In the cases
that the bound is not tight, the minimum value could be positive whereas the element is reported invalid. To further
confirm the answer, we obtain the tighter bound by refining the convex hull using the Bézier subdivision algorithm.
The algorithm relies on the convex hull property and the de Casteljau algorithm [7].
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Indeed, if the negative minimum of the fifteen control values corresponds to one of the vertices of the element,
then the element is invalid. If not, and the negative minimum of the fifteen control values corresponds to one of the
three nodes on the edge, then it is necessary to refine this edge. We use the Bézier subdivision algorithm to split the
edge into two sub-edges. If the negative minimum of the fifteen control values corresponds to one of the three nodes
on the face, then it is necessary to refine this face. We use the Bézier subdivision algorithm to split the face into three
sub-faces. In this way, the new control polygons are closer to the original polynomial, and the bound becomes much
tighter. Other algorithms such as degree elevation could also be used, but the Bézier subdivision algorithm is selected
here because the convergence of this repeated subdivision process is very fast [4,5].

It is possible to identify which curved mesh edges need to be corrected when a negative lower bound at a specific
control point is found. For example, if the negative lower bound occurs on a mesh vertex, the edges connected to the
vertex are the candidates. If one of the two edges is a boundary edge, it is assumed to be correct, then the other one is
to be corrected. If the negative lower bound occurs on a mesh edge, then this edge is the one to be corrected. If the
negative lower bound occurs on a face, then the edges that bound the face need to be corrected except the boundary
edges. Once the edge causes negative Jacobian is indentified, local mesh modifications can be used to correct the
shape.

Because each curved edge has two control points in the middle, and each control point determines the curvature of
the corresponding half of the edge, we first distinguish which part of the curved edge is intersected. For example, if
the left half of the curved edge is intersected, that means the curvature determined by the corresponding control point
is not large enough. We enlarge the curvature by rotating the segment formed by the left endpoint and the left control
point around the left endpoint by a small angle. We do it repeatedly until the lower bound of the Jacobian becomes
positive.

6. Geometric and topological fidelity to boundaries

While smoothing out contours, the curved edge should not deviate too much from the linear edge to preserve the
shape and avoid interference with other curved edges. The algorithm we present in this paper offers a mathematical
guarantee that the boundary of the high-order mesh it produces is a faithful representation of the geometric shape
within a requested fidelity tolerance. We present proofs of the fact here.

The linear mesh constructed by the method in Sect. 3 provides a faithful representation of the boundary. To mea-
sure the distance between the geometric boundaries and the boundaries of the corresponding sub-mesh, we use the
two-sided Hausdorff distance. This measure requires that the boundaries of the linear mesh be within the requested
tolerance. Below we prove that the curved mesh boundary cannot deviate from the straight mesh boundary by more
than a small multiple of the fidelity tolerance, and therefore, for a given value of the fidelity tolerance, we can ac-
commodate both straight and curved deviations. However, the supplied fidelity tolerance must be strictly positive.

A

Fig. 4: An illustration of the deviation from the curved edge to the original linear edge. C; is a control point of curved
edge AO, C is a control point of curved edge OB. Find the point Q such that |QA|/|0B|= |OA|/|OB|. CL L OA,
0D 1 OA.
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Table 2: Number of detected invalid elements for the three examples below

Image Elements Invalid edges Corrected edges
SPL brain atlas 3034 1 1

SPL abdominal atlas 2025 1 1

NASA Shuttle 4572 0

Since the curved mesh is transformed from the linear mesh, the deviation of the curved edge from the linear edge
influences the fidelity. In Fig. 4, let’s consider the deviation (say X) of curved edge AOto linear edge AO. The length
of segment C|C; controls the curvature of the curve at the Bézier endpoint. Now we need to bound the deviation from
the curved edge to the original linear edge. We fix the length of segment C,C, such that |C;C;| equals to half of the
length of shortest linear edge. Due to the convex hull property, the maximum deviation from the curved edge to the
original linear edge is less than the distance from the control point to the linear edge, and then we have

X <|CiLI<|C;0|

Therefore, the deviation of the curved edge from the linear edge is bounded. The boundary is completely enclosed by
the requested tolerance while maintaining the smoothness.

7. Mesh examples

We apply our algorithm to a variety of examples in the following. For these examples, the input data is a two-
dimensional image. The procedure described in Section 4.2 was implemented in MATLAB. All the other steps were
implemented in C++ for efficiency.

In both of the brain atlas [20] and abdominal atlas [20], the size are 256 = 256 pixels. Each pixel has side lengths
of 0.9375 and 0.9375 units in x, y directions, respectively. The size of the NASA Shuttle is 500 = 350 pixels, and the
pixels have side lengths of lunit in both x and y dimensions. Table 2 lists the total number of elements, number of
actual invalid elements and number of corrected edges in the final meshes of the three examples. Several figures show
the result of each step.

8. Conclusion

We presented a new approach for automatically constructing a high-order mesh to represent geometry with smooth
boundaries and with guaranteed fidelity and validity. The algorithm we presented is sequential. Our future work
includes the development of the corresponding parallel algorithm and the extension to the three-dimensional high-
order mesh generation.
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Fig. 5: (a) Curved mesh of a NASA Shuttle with smooth boundary. (b) Some zoomed-in parts of the curved mesh.
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Fig. 6: Results of the first two steps of our algorithm. (a) Linear mesh of a slice of the brain atlas within two pixels
fidelity tolerance. (b) Smooth curved boundary of a slice of the brain atlas within two pixels fidelity tolerance.
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Fig. 7: Results of the first two steps of our algorithm. (a) Linear mesh of a slice of the abdominal atlas within two

pixels fidelity tolerance. (b) Smooth curved boundary of a slice of the abdominal atlas within two pixels fidelity
tolerance.
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Fig. 8: Results of curving mesh entities in the interior according to the equilibrium solution of a linear elasticity
problem. (a) After calculating the lower bound of the Jacobian for each element, one was reported having the non-

positive value. The invalid element is highlighted in green bold curves with a number. (b) The invalid element is
highlighted in red bold curves with a number.
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Fig. 9: After the detection of the invalid elements, the checking procedure reported the intersected mesh edges and
correct them accordingly. (a) A zoomed-in view of an invalid element, high-lighted by green bold curves. (b) A
zoomed-in view of the intersected mesh edge corrected by the red curve. (c) A zoomed-in view of an invalid element,
high-lighted by red bold curves. (d) A zoomed-in view of the intersected mesh edge corrected by the red curve.
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